Climate change and Mediterranean seagrass meadows: a synopsis for environmental managers

G. PERGENT1, H. BAZAIRI2, C. N. BIANCHI3, C.-F. BOUDOURESQUE4, M.-C. BUJA5, S. CALVO6, P. CLABAUT1, M. HARMELIN-VIVIEN6, M. ANGEL MATEO7, M. MONTEFALCONE3, C. MORRI8, S. ORFANIDIS8, C. PERGENT-MARTINI1, R. SEMROUD9, O. SERRANO10,11, T. THIBAUT4, A. TOMASELLO6 and M. VERLAQUE4

1 EqEL - FRES 3041, University of Corsica, BP 52, 20250 Corte, France
2 University Mohammed V-Agdal, Faculty of Sciences, BP 1014 RP, Rabat, Morocco
3 DiSTA V , University of Genoa, Corso Europa 26, I-16132 Genova, Italy
4 MIO - UMR 7294, Aix Marseille University, 13288 Marseille Cedex 9, France
5 Benthic Ecology Laboratory, Stazione Zoologica A. Dohrn, 80077, Ischia (Naples), Italy
6 DiSTeM, University of Palermo, Viale delle Scienze Edificio 16, 90128 Palermo
7 CSIC, CEAB, Acces Cala St Francesc 14, Blanes 17300, Spain
8 Nat Agr Res Fdn, Fisheries Res Inst, Nea Peramos 64007, Kavala, Greece
9 ENSMAL, B.P. 19, Campus Bois de Cars, Dely Ibrahim, 16320 ALGER, Algeria
10 School of Natural Sciences & Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup WA 6027, Australia
11 The University of Western Australia Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia

Corresponding author: pergent@univ-corse.fr
Handling Editor: Argyro Zenetos

Received: 12 September 2013; Accepted: 18 January 2014; Published on line: 28 February 2014

Abstract

This synopsis focuses on the effects of climate change on Mediterranean seagrasses, and associated communities, and on the contribution of the main species, Posidonia oceanica, to the mitigation of climate change effects through sequestering carbon dioxide. Whilst the regression of seagrass meadows is well documented, generally linked to anthropogenic pressures, global warming could be a cause of new significant regression, notably linked to the introduction of exotic species, the rise of Sea-Surface Temperature (SST), and relative sea level. Seagrass communities could also be affected by climate change through the replacement of high structural complexity seagrass species by species of lower complexity and even by opportunistic introduced species. Although it is currently very difficult to predict the consequences of these alterations and their cascade effects, two main potential conflicting trends in the functioning of seagrass ecosystems are acceleration of the herbivore pathway or the detritivore pathway. The mean net primary production of the dominant species, Posidonia oceanica, is relatively high and can be estimated to range between 92.5 to 144.7 g C m^-2 a^-1. Around 27% of the total carbon fixed by this species enters the sedimentary pathway leading to formation, over millennia, of highly organic deposits, rich in refractory carbon. At the Mediterranean scale, the sequestration rate might reach 1.09 Tg C a^-1. The amount of this stored carbon is estimated to range from 71 to 273 kg C m^-2, which when considered at the Mediterranean scale would represent 11 to 42% of the CO2 emissions produced by Mediterranean countries since the beginning of the Industrial Revolution. The greatest value of the P. oceanica ecosystem, in the context of mitigation of global climate change, is linked to this vast long-term carbon stock accumulated over millennia, and therefore, efforts should be focused on preserving the meadows to keep this reservoir intact.

Keywords: Seagrass ecosystem, Posidonia oceanica, global change, primary production, carbon sink, Mediterranean, seagrasses.